When the feedback is connected in parallel with the output the short circuit loop gain is zero so our total output impedance is written as:
\begin{equation} Z_{o}=\frac{\rho}{1 - L_{o}} \end{equation}The Direct Transfer at the output port is:
\begin{equation} \rho=\frac{R_{\ell} R_{in} R_{o} \left(- 2 L_{out} s - R_{o}\right)}{2 C_{in} L_{out} R_{\ell} R_{in} R_{o} s^{2} + R_{\ell} R_{in} R_{o} + R_{o}^{2} \left(R_{\ell} + R_{in}\right) + s \left(C_{in} R_{\ell} R_{in} R_{o}^{2} + L_{out} R_{\ell} R_{in} + 2 L_{out} R_{o} \left(R_{\ell} + R_{in}\right)\right)} \end{equation}The Loop Gain at the output port is:
\begin{equation} L_{o}=\frac{2 \pi A_{0} G_{B} R_{\ell} R_{in} \left(- L_{out} s - R_{o}\right)}{2 A_{0} C_{in} L_{out} R_{\ell} R_{in} R_{o} s^{3} + 2 \pi G_{B} R_{o} \left(R_{\ell} R_{in} + R_{o} \left(R_{\ell} + R_{in}\right)\right) + s^{2} \left(A_{0} C_{in} R_{\ell} R_{in} R_{o}^{2} + A_{0} L_{out} R_{\ell} R_{in} + 2 A_{0} L_{out} R_{o} \left(R_{\ell} + R_{in}\right) + 4 \pi C_{in} G_{B} L_{out} R_{\ell} R_{in} R_{o}\right) + s \left(A_{0} R_{\ell} R_{in} R_{o} + A_{0} R_{o}^{2} \left(R_{\ell} + R_{in}\right) + 2 \pi G_{B} \left(C_{in} R_{\ell} R_{in} R_{o}^{2} + L_{out} R_{\ell} R_{in} + 2 L_{out} R_{o} \left(R_{\ell} + R_{in}\right)\right)\right)} \end{equation}The DC impedance is:
\begin{equation} Z_{odc}=- \frac{R_{\ell} R_{in} R_{o}}{A_{0} R_{\ell} R_{in} + R_{\ell} R_{in} + R_{\ell} R_{o} + R_{in} R_{o}} \end{equation}From the Gain Plot we see that at 55.0dB the frequency is about 850000.0 this leads to a 1st Order GBW of 477990126.4117967
The DC Gain of the Op-Amp is 114.0dB so the first pole of the op amp occurs at 953.715686156669
This pole is a zero in the output impedance Z_o; so for a first order rise:
\begin{equation} Z_{o}=Z_{odc} \left(1 + \frac{s}{p_{1}}\right) \end{equation}From our data sheet at 10.0kHz the Impedance is 0.6$m\Omega$ Now I find that:
\begin{equation} R_{o}=28.55\,\left[ \mathrm{\Omega}\right] \end{equation}Now that the Output Resistance is determined I can solve for the output inductance.
At 500.0kHz the impedance is 0.021$\Omega$
Past the first zero the impedance function is:
\begin{equation} Z_{o}=Z_{odc} \left(1 + \frac{s}{p_{1}}\right) \left(\frac{s}{z_{2}} + 1\right) \end{equation}The Magnitude of $z_2$ can be approximated as:
\begin{equation} z_{2}=\frac{Z_{odc} w^{2}}{Z_{o} p_{1}} \end{equation} \begin{equation} z_{2}=\frac{3.555 \cdot 10^{5}}{\pi}\,\left[ \mathrm{Hz}\right] \end{equation}From the direct transfer it is clear the zero due to the inductance is:
\begin{equation} z_{2}=\frac{R_{o}}{2 L_{out}} \end{equation} \begin{equation} L_{out}=2.008 \cdot 10^{-5}\,\left[ \mathrm{H}\right] \end{equation}There is a capacitance at frequencies around 100MHz but this is not of interest since our signal is below 1MHz.
Go to Op-Amp-Output-Impedance-Model_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.3.0 © 2009-2022 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2022-11-20 18:08:04