"GB Derivation"

GB Derivation

Schematic diagram of Bandwidth Model Diagram
Figure: bandwidthbudget.svg
Schematic diagram of Bandwidth Model Diagram

Found the nonzero DC loop gain.

The DC loop gain equals:

\begin{equation} L_{DC}=- \frac{A_{0} C_{f}}{C_{f} + C_{s}} \end{equation}

Now we can determine minimum gain from the desired Relative inaccuracy of the charge to voltage conversion; which is: 0.2 I want to take only half

\begin{equation} A_{0min}=10 + \frac{10 C_{s}}{C_{f}} \end{equation} \begin{equation} A_{0min}=1510.0 \end{equation}

The loop gain-poles product is found as:

\begin{equation} LP=\frac{6.283 C_{f} G_{B}}{C_{f} + C_{s}} \end{equation}

The order of the LP product is: 1

Go to Bandwidth-Budget_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 1.3.0 © 2009-2022 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2022-11-20 18:08:04