"Noise Test"
* SPICE file generated by spice-noqsi version 20181225
* Send requests or bug reports to jpd@noqsi.com
Xa unnamed_net2 0 unnamed_net1 0 ABCD A={A_i_n} B=0 C=0 D={D_i_n/(R_s+R_f_n)}
X1 unnamed_net2 0 out NM18_noise ID={ID_i} W={W_i} L={L_i} IG=0
Vs unnamed_net3 0 V value={V_in} dc=0 dcvar=0 noise={4*k*T*(R_s+R_f_n)}
Rs unnamed_net3 unnamed_net1 R value={R_s+R_f_n} noisetemp=0 noiseflow=0 dcvar=0
.end
| RefDes | Nodes | Refs | Model | Param | Symbolic | Numeric |
|---|---|---|---|---|---|---|
| E1_Xa | 7_Xa 8_Xa unnamed_net2 0 | E | value | $A_{i n}$ | $1.594$ | |
| F1_X1 | unnamed_net2 0 10_X1 0 | F | value | $\frac{0.5 s}{\pi f_{T X1}}$ | $2.131 \cdot 10^{-11} s$ | |
| F1_Xa | unnamed_net1 0 0 6_Xa | F | value | $\frac{D_{i n}}{R_{f n} + R_{s}}$ | $0.6274$ | |
| G1_Xa | unnamed_net1 0 unnamed_net2 0 | G | value | $0$ | $0$ | |
| H1_X1 | unnamed_net2 out 1_X1 10_X1 | H | value | $\frac{1}{g_{m X1}}$ | $12.5$ | |
| H1_Xa | 8_Xa 0 6_Xa 5_Xa | H | value | $0$ | $0$ | |
| I1_X1 | 0 1_X1 | I | value | $0$ | $0$ | |
| noise | $\frac{4 T k \left(\left(\frac{f_{\ell X1}}{f}\right)^{AF_{N18}} + 1\right)}{R_{N X1}}$ | $1.071 \cdot 10^{-21} + \frac{9.576 \cdot 10^{-16}}{f}$ | ||||
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| I2_X1 | unnamed_net2 0 | I | value | $0$ | $0$ | |
| noise | $0$ | $0$ | ||||
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| N1_Xa | unnamed_net2 5_Xa unnamed_net1 7_Xa | N | ||||
| Rs | unnamed_net3 unnamed_net1 | R | value | $R_{f n} + R_{s}$ | $356.6$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| Vs | unnamed_net3 0 | V | value | $V_{in}$ | $V_{in}$ | |
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| noise | $4 T k \left(R_{f n} + R_{s}\right)$ | $5.907 \cdot 10^{-18}$ |
| Name | Symbolic | Numeric |
|---|---|---|
| $AF_{N18}$ | $1$ | $1$ |
| $A_{i n}$ | $1.594$ | $1.594$ |
| $A_{y}$ | $0.04$ | $0.04$ |
| $B_{eq}$ | $\frac{0.5}{A_{y}}$ | $12.5$ |
| $B_{fb eq}$ | $\frac{R_{a} R_{b}}{R_{a} + R_{b} + R_{c}}$ | $12.5$ |
| $CGBO_{N18}$ | $1.0 \cdot 10^{-12}$ | $1.0 \cdot 10^{-12}$ |
| $CGSO_{N18}$ | $3.0 \cdot 10^{-10}$ | $3.0 \cdot 10^{-10}$ |
| $CJB_{0 N18}$ | $0.001$ | $0.001$ |
| $C_{OX N18}$ | $\frac{\epsilon_{0} \epsilon_{SiO2}}{TOX_{N18}}$ | $0.008422$ |
| $D_{eq}$ | $\frac{0.5}{A_{y} Z_{i}}$ | $0.04167$ |
| $D_{fb eq}$ | $\frac{R_{b} + R_{c}}{R_{a} + R_{b} + R_{c}}$ | $0.04167$ |
| $D_{i n}$ | $223.7$ | $223.7$ |
| $\Delta_{A y}$ | $0.004$ | $0.004$ |
| $\Delta_{R a}$ | $47.0$ | $47.01$ |
| $\Delta_{R b}$ | $1.361$ | $1.361$ |
| $\Delta_{R c}$ | $5.23$ | $5.231$ |
| $\Delta_{Z i}$ | $12$ | $12$ |
| $E_{CRIT N18}$ | $5.6 \cdot 10^{6}$ | $5.6 \cdot 10^{6}$ |
| $ID_{i}$ | $0.004927$ | $0.004927$ |
| $IM_{3}$ | $-66$ | $-66$ |
| $I_{0 N18}$ | $2 C_{OX N18} N_{s N18} U_{T}^{2} u_{0 N18}$ | $6.383 \cdot 10^{-7}$ |
| $I_{omax}$ | $0.0005$ | $0.0005$ |
| $I_{pmax}$ | $0.02$ | $0.02$ |
| $KF_{N18}$ | $2.0 \cdot 10^{-27}$ | $2.0 \cdot 10^{-27}$ |
| $LDS_{N18}$ | $1.8 \cdot 10^{-7}$ | $1.8 \cdot 10^{-7}$ |
| $L_{i}$ | $1.8 \cdot 10^{-7}$ | $1.8 \cdot 10^{-7}$ |
| $NF$ | $2.5$ | $2.5$ |
| $NF_{fb eq}$ | $\frac{0.5 R_{a} \left(R_{b} - R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + \frac{R_{b} \left(R_{a} + R_{c} + R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + \frac{0.5 R_{c} \left(R_{b} - R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + 1$ | $1.189$ |
| $N_{s N18}$ | $1.35$ | $1.35$ |
| $R_{a}$ | $1082.0$ | $1082.0$ |
| $R_{aeq}$ | $\frac{0.5 \left(A_{y} Z_{i} - 1\right) \left(A_{y} Z_{i} + 1\right)}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)} + \frac{\left(A_{y} Z_{i} - 1\right) \left(10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 0.5 \cdot 10^{0.1 NF \alpha_{NF fb}} + 0.25 A_{y}^{2} Z_{i}^{2} - 0.5 A_{y} Z_{i} + 0.25\right)^{0.5}}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)}$ | $1082.0$ |
| $R_{b}$ | $13.04$ | $13.04$ |
| $R_{beq}$ | $\frac{Z_{i}}{2 A_{y} Z_{i} - 1}$ | $13.04$ |
| $R_{c}$ | $34.01$ | $34.01$ |
| $R_{ceq}$ | $\frac{- Z_{i} + \frac{0.5 \left(A_{y} Z_{i} - 1\right) \left(A_{y} Z_{i} + 1\right)}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)} + \frac{\left(A_{y} Z_{i} - 1\right) \left(10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 0.5 \cdot 10^{0.1 NF \alpha_{NF fb}} + 0.25 A_{y}^{2} Z_{i}^{2} - 0.5 A_{y} Z_{i} + 0.25\right)^{0.5}}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)}}{2 A_{y} Z_{i} - 1}$ | $34.01$ |
| $R_{\ell}$ | $1.0 \cdot 10^{4}$ | $1.0 \cdot 10^{4}$ |
| $R_{f n}$ | $56.55$ | $56.55$ |
| $R_{s}$ | $Z_{i}$ | $300$ |
| $T$ | $300$ | $300$ |
| $TOX_{N18}$ | $4.1 \cdot 10^{-9}$ | $4.1 \cdot 10^{-9}$ |
| $T_{max}$ | $70$ | $70$ |
| $T_{min}$ | $0$ | $0$ |
| $\Theta_{N18}$ | $0.28$ | $0.28$ |
| $U_{T}$ | $\frac{T k}{q}$ | $0.02585$ |
| $V_{KF N18}$ | $2$ | $2$ |
| $V_{P}$ | $1.8$ | $1.8$ |
| $V_{cmmax}$ | $1$ | $1$ |
| $V_{cmmin}$ | $0.8$ | $0.8$ |
| $W_{i}$ | $0.0003117 \pi$ | $0.0009792$ |
| $Z_{i}$ | $300$ | $300$ |
| $Z_{scm}$ | $5.0 \cdot 10^{-13}$ | $5.0 \cdot 10^{-13}$ |
| $\alpha_{I totin}$ | $0.5$ | $0.5$ |
| $\alpha_{NF con}$ | $0.25$ | $0.25$ |
| $\alpha_{NF fb}$ | $0.3$ | $0.3$ |
| $c$ | $2.998 \cdot 10^{8}$ | $2.998 \cdot 10^{8}$ |
| $\epsilon_{0}$ | $\frac{1}{c^{2} \mu_{0}}$ | $8.854 \cdot 10^{-12}$ |
| $\epsilon_{SiO2}$ | $3.9$ | $3.9$ |
| $f_{max}$ | $2.5 \cdot 10^{8}$ | $2.5 \cdot 10^{8}$ |
| $f_{min}$ | $1.0 \cdot 10^{6}$ | $1.0 \cdot 10^{6}$ |
| $k$ | $1.381 \cdot 10^{-23}$ | $1.381 \cdot 10^{-23}$ |
| $\mu_{0}$ | $4.0 \cdot 10^{-7} \pi$ | $1.257 \cdot 10^{-6}$ |
| $q$ | $1.602 \cdot 10^{-19}$ | $1.602 \cdot 10^{-19}$ |
| $u_{0 N18}$ | $0.042$ | $0.042$ |
| $IC_{CRIT X1}$ | $\frac{0.0625}{N_{s N18}^{2} U_{T}^{2} \left(\Theta_{N18} + \frac{1}{E_{CRIT N18} L_{i}}\right)^{2}}$ | $31.71$ |
| $IC_{X1}$ | $IC_{i X1} \cdot \left(1 + \frac{0.25 IC_{i X1}}{IC_{CRIT X1}}\right)$ | $1.435$ |
| $IC_{i X1}$ | $\frac{ID_{i} L_{i}}{I_{0 N18} W_{i}}$ | $1.419$ |
| $R_{N X1}$ | $\frac{IC_{X1} + 1}{N_{s N18} g_{m X1} \cdot \left(0.6667 IC_{X1} + 0.5\right)}$ | $15.47$ |
| $c_{db X1}$ | $CJB_{0 N18} LDS_{N18} W_{i}$ | $1.762 \cdot 10^{-13}$ |
| $c_{dg X1}$ | $CGSO_{N18} W_{i}$ | $2.937 \cdot 10^{-13}$ |
| $c_{gb X1}$ | $2 CGBO_{N18} L_{i} + \frac{0.3333 C_{OX N18} L_{i} W_{i} \left(N_{s N18} - 1\right)}{N_{s N18}}$ | $1.283 \cdot 10^{-13}$ |
| $c_{gs X1}$ | $CGSO_{N18} W_{i} + 0.6667 C_{OX N18} L_{i} W_{i}$ | $1.283 \cdot 10^{-12}$ |
| $c_{iss X1}$ | $c_{dg X1} + c_{gb X1} + c_{gs X1}$ | $1.705 \cdot 10^{-12}$ |
| $f_{T X1}$ | $\frac{0.5 g_{m X1}}{\pi c_{iss X1}}$ | $7.468 \cdot 10^{9}$ |
| $f_{\ell X1}$ | $\frac{0.375 KF_{N18} g_{m X1} \cdot \left(\frac{2 IC_{X1}^{0.5} N_{s N18} U_{T}}{V_{KF N18}} + 1\right)}{C_{OX N18}^{2} L_{i} N_{s N18} T W_{i} k}$ | $8.944 \cdot 10^{5}$ |
| $g_{m X1}$ | $\frac{ID_{i}}{N_{s N18} U_{T} \left(IC_{X1} \cdot \left(1 + \frac{IC_{X1}}{IC_{CRIT X1}}\right) + 0.5 \left(IC_{X1} \cdot \left(1 + \frac{IC_{X1}}{IC_{CRIT X1}}\right)\right)^{0.5} + 1\right)^{0.5}}$ | $0.08002$ |
| Name |
|---|
| $V_{in}$ |
Go to Noise-Test_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2023-11-25 20:52:48