"Circuit Data"

Circuit Data

Circuit diagram

Netlist: noiseResSimplified.cir

"Noise Test"
* SPICE file generated by spice-noqsi version 20181225
* Send requests or bug reports to jpd@noqsi.com
Xa unnamed_net2 0 unnamed_net1 0 ABCD A={A_i_n} B=0 C=0 D={D_i_n/(R_s+R_f_n)}
X1 unnamed_net2 0 out NM18_noise ID={ID_i} W={W_i} L={L_i} IG=0
Vs unnamed_net3 0 V value={V_in} dc=0 dcvar=0 noise={4*k*T*(R_s+R_f_n)}
Rs unnamed_net3 unnamed_net1 R value={R_s+R_f_n} noisetemp=0 noiseflow=0 dcvar=0
.end
Table: Element data of expanded netlist 'Noise Test'
RefDesNodesRefsModelParamSymbolicNumeric
E1_Xa7_Xa 8_Xa unnamed_net2 0 E value$A_{i n}$$1.594$
F1_X1unnamed_net2 0 10_X1 0 F value$\frac{0.5 s}{\pi f_{T X1}}$$2.131 \cdot 10^{-11} s$
F1_Xaunnamed_net1 0 0 6_Xa F value$\frac{D_{i n}}{R_{f n} + R_{s}}$$0.6274$
G1_Xaunnamed_net1 0 unnamed_net2 0 G value$0$$0$
H1_X1unnamed_net2 out 1_X1 10_X1 H value$\frac{1}{g_{m X1}}$$12.5$
H1_Xa8_Xa 0 6_Xa 5_Xa H value$0$$0$
I1_X10 1_X1 I value$0$$0$
noise$\frac{4 T k \left(\left(\frac{f_{\ell X1}}{f}\right)^{AF_{N18}} + 1\right)}{R_{N X1}}$$1.071 \cdot 10^{-21} + \frac{9.576 \cdot 10^{-16}}{f}$
dc$0$$0$
dcvar$0$$0$
I2_X1unnamed_net2 0 I value$0$$0$
noise$0$$0$
dc$0$$0$
dcvar$0$$0$
N1_Xaunnamed_net2 5_Xa unnamed_net1 7_Xa N
Rsunnamed_net3 unnamed_net1 R value$R_{f n} + R_{s}$$356.6$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
Vsunnamed_net3 0 V value$V_{in}$$V_{in}$
dc$0$$0$
dcvar$0$$0$
noise$4 T k \left(R_{f n} + R_{s}\right)$$5.907 \cdot 10^{-18}$
Table: Parameter definitions in 'Noise Test'.
NameSymbolicNumeric
$AF_{N18}$$1$$1$
$A_{i n}$$1.594$$1.594$
$A_{y}$$0.04$$0.04$
$B_{eq}$$\frac{0.5}{A_{y}}$$12.5$
$B_{fb eq}$$\frac{R_{a} R_{b}}{R_{a} + R_{b} + R_{c}}$$12.5$
$CGBO_{N18}$$1.0 \cdot 10^{-12}$$1.0 \cdot 10^{-12}$
$CGSO_{N18}$$3.0 \cdot 10^{-10}$$3.0 \cdot 10^{-10}$
$CJB_{0 N18}$$0.001$$0.001$
$C_{OX N18}$$\frac{\epsilon_{0} \epsilon_{SiO2}}{TOX_{N18}}$$0.008422$
$D_{eq}$$\frac{0.5}{A_{y} Z_{i}}$$0.04167$
$D_{fb eq}$$\frac{R_{b} + R_{c}}{R_{a} + R_{b} + R_{c}}$$0.04167$
$D_{i n}$$223.7$$223.7$
$\Delta_{A y}$$0.004$$0.004$
$\Delta_{R a}$$47.0$$47.01$
$\Delta_{R b}$$1.361$$1.361$
$\Delta_{R c}$$5.23$$5.231$
$\Delta_{Z i}$$12$$12$
$E_{CRIT N18}$$5.6 \cdot 10^{6}$$5.6 \cdot 10^{6}$
$ID_{i}$$0.004927$$0.004927$
$IM_{3}$$-66$$-66$
$I_{0 N18}$$2 C_{OX N18} N_{s N18} U_{T}^{2} u_{0 N18}$$6.383 \cdot 10^{-7}$
$I_{omax}$$0.0005$$0.0005$
$I_{pmax}$$0.02$$0.02$
$KF_{N18}$$2.0 \cdot 10^{-27}$$2.0 \cdot 10^{-27}$
$LDS_{N18}$$1.8 \cdot 10^{-7}$$1.8 \cdot 10^{-7}$
$L_{i}$$1.8 \cdot 10^{-7}$$1.8 \cdot 10^{-7}$
$NF$$2.5$$2.5$
$NF_{fb eq}$$\frac{0.5 R_{a} \left(R_{b} - R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + \frac{R_{b} \left(R_{a} + R_{c} + R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + \frac{0.5 R_{c} \left(R_{b} - R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + 1$$1.189$
$N_{s N18}$$1.35$$1.35$
$R_{a}$$1082.0$$1082.0$
$R_{aeq}$$\frac{0.5 \left(A_{y} Z_{i} - 1\right) \left(A_{y} Z_{i} + 1\right)}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)} + \frac{\left(A_{y} Z_{i} - 1\right) \left(10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 0.5 \cdot 10^{0.1 NF \alpha_{NF fb}} + 0.25 A_{y}^{2} Z_{i}^{2} - 0.5 A_{y} Z_{i} + 0.25\right)^{0.5}}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)}$$1082.0$
$R_{b}$$13.04$$13.04$
$R_{beq}$$\frac{Z_{i}}{2 A_{y} Z_{i} - 1}$$13.04$
$R_{c}$$34.01$$34.01$
$R_{ceq}$$\frac{- Z_{i} + \frac{0.5 \left(A_{y} Z_{i} - 1\right) \left(A_{y} Z_{i} + 1\right)}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)} + \frac{\left(A_{y} Z_{i} - 1\right) \left(10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 0.5 \cdot 10^{0.1 NF \alpha_{NF fb}} + 0.25 A_{y}^{2} Z_{i}^{2} - 0.5 A_{y} Z_{i} + 0.25\right)^{0.5}}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)}}{2 A_{y} Z_{i} - 1}$$34.01$
$R_{\ell}$$1.0 \cdot 10^{4}$$1.0 \cdot 10^{4}$
$R_{f n}$$56.55$$56.55$
$R_{s}$$Z_{i}$$300$
$T$$300$$300$
$TOX_{N18}$$4.1 \cdot 10^{-9}$$4.1 \cdot 10^{-9}$
$T_{max}$$70$$70$
$T_{min}$$0$$0$
$\Theta_{N18}$$0.28$$0.28$
$U_{T}$$\frac{T k}{q}$$0.02585$
$V_{KF N18}$$2$$2$
$V_{P}$$1.8$$1.8$
$V_{cmmax}$$1$$1$
$V_{cmmin}$$0.8$$0.8$
$W_{i}$$0.0003117 \pi$$0.0009792$
$Z_{i}$$300$$300$
$Z_{scm}$$5.0 \cdot 10^{-13}$$5.0 \cdot 10^{-13}$
$\alpha_{I totin}$$0.5$$0.5$
$\alpha_{NF con}$$0.25$$0.25$
$\alpha_{NF fb}$$0.3$$0.3$
$c$$2.998 \cdot 10^{8}$$2.998 \cdot 10^{8}$
$\epsilon_{0}$$\frac{1}{c^{2} \mu_{0}}$$8.854 \cdot 10^{-12}$
$\epsilon_{SiO2}$$3.9$$3.9$
$f_{max}$$2.5 \cdot 10^{8}$$2.5 \cdot 10^{8}$
$f_{min}$$1.0 \cdot 10^{6}$$1.0 \cdot 10^{6}$
$k$$1.381 \cdot 10^{-23}$$1.381 \cdot 10^{-23}$
$\mu_{0}$$4.0 \cdot 10^{-7} \pi$$1.257 \cdot 10^{-6}$
$q$$1.602 \cdot 10^{-19}$$1.602 \cdot 10^{-19}$
$u_{0 N18}$$0.042$$0.042$
$IC_{CRIT X1}$$\frac{0.0625}{N_{s N18}^{2} U_{T}^{2} \left(\Theta_{N18} + \frac{1}{E_{CRIT N18} L_{i}}\right)^{2}}$$31.71$
$IC_{X1}$$IC_{i X1} \cdot \left(1 + \frac{0.25 IC_{i X1}}{IC_{CRIT X1}}\right)$$1.435$
$IC_{i X1}$$\frac{ID_{i} L_{i}}{I_{0 N18} W_{i}}$$1.419$
$R_{N X1}$$\frac{IC_{X1} + 1}{N_{s N18} g_{m X1} \cdot \left(0.6667 IC_{X1} + 0.5\right)}$$15.47$
$c_{db X1}$$CJB_{0 N18} LDS_{N18} W_{i}$$1.762 \cdot 10^{-13}$
$c_{dg X1}$$CGSO_{N18} W_{i}$$2.937 \cdot 10^{-13}$
$c_{gb X1}$$2 CGBO_{N18} L_{i} + \frac{0.3333 C_{OX N18} L_{i} W_{i} \left(N_{s N18} - 1\right)}{N_{s N18}}$$1.283 \cdot 10^{-13}$
$c_{gs X1}$$CGSO_{N18} W_{i} + 0.6667 C_{OX N18} L_{i} W_{i}$$1.283 \cdot 10^{-12}$
$c_{iss X1}$$c_{dg X1} + c_{gb X1} + c_{gs X1}$$1.705 \cdot 10^{-12}$
$f_{T X1}$$\frac{0.5 g_{m X1}}{\pi c_{iss X1}}$$7.468 \cdot 10^{9}$
$f_{\ell X1}$$\frac{0.375 KF_{N18} g_{m X1} \cdot \left(\frac{2 IC_{X1}^{0.5} N_{s N18} U_{T}}{V_{KF N18}} + 1\right)}{C_{OX N18}^{2} L_{i} N_{s N18} T W_{i} k}$$8.944 \cdot 10^{5}$
$g_{m X1}$$\frac{ID_{i}}{N_{s N18} U_{T} \left(IC_{X1} \cdot \left(1 + \frac{IC_{X1}}{IC_{CRIT X1}}\right) + 0.5 \left(IC_{X1} \cdot \left(1 + \frac{IC_{X1}}{IC_{CRIT X1}}\right)\right)^{0.5} + 1\right)^{0.5}}$$0.08002$
Table: Parameters without definition in 'Noise Test.
Name
$V_{in}$

Go to Noise-Test_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2023-11-25 20:52:48