The DC Loop gain and Servo Function are:
\begin{equation} L_{GDC}=- \frac{259.5 g_{mo}}{\frac{0.0004519 ID_{o}}{L_{o}} + 3.559} \end{equation}This is similar to determining the bandwidth for a system that has a loop gain and zeros in the feedback loop
That means the bandwidth is determined by the minimum between two functions.
So I can write the Servo function bandwidth as a function of $C_{gso}$ where:
\begin{equation} L_{Cgs}=\frac{\frac{0.04493 ID_{o} s \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right)}{L_{o}} + \frac{0.0004519 ID_{o}}{L_{o}} + 1.138 \cdot 10^{4} g_{mo} s \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 259.5 g_{mo} + 356.8 s \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 3.559}{C_{gso} \left(\frac{1.441 ID_{o} s^{2} \cdot \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right)}{L_{o}} + \frac{0.0206 ID_{o} s}{L_{o}} + 1.151 \cdot 10^{4} s^{2} \cdot \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 164.6 s\right)} \end{equation} \begin{equation} S_{Cgs0}=\frac{1.138 \cdot 10^{4} g_{mo} s \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 259.5 g_{mo}}{C_{gso} \left(\frac{0.04493 ID_{o} s \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right)}{L_{o}} + \frac{0.0004519 ID_{o}}{L_{o}} + 1.138 \cdot 10^{4} g_{mo} s \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 259.5 g_{mo} + 356.8 s \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 3.559\right)} \end{equation}Go to Dual-Stage-Anti-Series-MOSFET-Cross-Coupled-Feedback-Analysis_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2023-11-25 20:52:48