"Loop Gain In terms of Transconductance and Gate Capacitance"

Loop Gain In terms of Transconductance and Gate Capacitance

Output Transconductance in terms of Maximum Loop Gain Error

The DC Loop gain and Servo Function are:

\begin{equation} L_{GDC}=- 72.93 g_{mo} \end{equation} \begin{equation} S_{DC}=\frac{4153.0 g_{mo}}{4153.0 g_{mo} + 56.94} \end{equation}

SLiCAP's Servo Function is:

\begin{equation} S_{DC}=\frac{4153.0 g_{mo}}{4153.0 g_{mo} + 56.94} \end{equation}

The Loop Gain Error required is:

\begin{equation} LG_{err}=10\,\left[ \mathrm{percent}\right] \end{equation} \begin{equation} g_{mo max}=1.358 \end{equation} \begin{equation} g_{mo min}=0.1234 \end{equation} \begin{equation} g_{mo min}=\frac{\left(A_{y} - \Delta_{A y}\right) \left(0.5 R_{a} R_{c} g_{o XMi} + R_{a} + 0.25 R_{b} R_{c} g_{m XMi} + 0.25 R_{b} R_{c} g_{o XMi} + 0.5 R_{b} - 0.25 R_{c} Z_{i} g_{m XMi} + 0.25 R_{c} Z_{i} g_{o XMi} + R_{c} + 0.5 Z_{i}\right)}{\Delta_{A y} R_{c} \left(0.25 R_{a} R_{b} g_{m XMi} + R_{a} + 0.25 R_{b} Z_{i} g_{m XMi} + 0.5 Z_{i}\right)} \end{equation}

Servo Function Gain Bandwidth in terms of Gate Capacitance:

The loop Gain can be written in terms of just $C_{gso}$

\begin{equation} L_{g}=\frac{N_{1}}{C_{gso} D_{1} + D_{2}} \end{equation}

The Servo Function becomes:

\begin{equation} S_{func}=- \frac{N_{1}}{C_{gso} D_{1} + D_{2} - N_{1}} \end{equation}

This can be written as two components, one where $C_{gso}=0$ the other is a function of $C_{gso}$:

\begin{equation} S_{func}=- \frac{L_{cgso} S_{0cgso}}{1 - L_{cgso}} \end{equation} \begin{equation} S_{0cgso}=- \frac{N_{1}}{D_{2} - N_{1}} \end{equation} \begin{equation} L_{cgso}=\frac{D_{2} - N_{1}}{C_{gso} D_{1}} \end{equation} \begin{equation} S_{func}=\frac{2.248 \cdot 10^{4} s \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 512.5}{C_{gso} \left(1.842 \cdot 10^{5} s^{2} \cdot \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 2633.0 s\right) + 2.818 \cdot 10^{4} s \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 569.4} \end{equation}

This is similar to determining the bandwidth for a system that has a loop gain and zeros in the feedback loop

That means the bandwidth is determined by the minimum between two functions.

So I can write the Servo function bandwidth as a function of $C_{gso}$ where:

\begin{equation} \frac{D_{2} - N_{1}}{C_{gso} D_{1}}=\frac{2.818 \cdot 10^{4} s \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 569.4}{C_{gso} \left(1.842 \cdot 10^{5} s^{2} \cdot \left(1.87 \cdot 10^{-13} \pi + 1.979 \cdot 10^{-12}\right) + 2633.0 s\right)} \end{equation}

Now I can solve for the maximum value of the gate capacitance:

\begin{equation} C_{gso}=9.741 \cdot 10^{-11} \end{equation} \begin{equation} C_{gso}=\frac{0.5 \left|{0.5 R_{a} R_{b} R_{c} g_{mo} + 0.25 R_{a} R_{b} R_{c} g_{o XMi} + 0.5 R_{a} R_{b} + 0.5 R_{a} R_{c} Z_{i} g_{mo} + 0.25 R_{a} R_{c} Z_{i} g_{o XMi} + 0.5 R_{a} Z_{i} + 0.5 R_{b} R_{c} Z_{i} g_{mo} + 0.5 R_{b} R_{c} Z_{i} g_{o XMi} + 0.5 R_{b} R_{c} + R_{b} Z_{i} + 0.5 R_{c} Z_{i}}\right|}{\pi \left|{R_{c}}\right| \left|{f_{max}}\right| \left|{0.5 R_{a} R_{b} + 0.5 R_{a} Z_{i} + R_{b} Z_{i}}\right|} \end{equation}

The maximum possible bandwidth of the servo function occurs when $C_{gso}=0$:

\begin{equation} f_{S max}=1.253 \cdot 10^{9} \end{equation}

Go to Dual-Stage-Anti-Series-Cross-Coupled-Feedback-Analysis_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2023-11-25 20:52:48