"Dual Stage Anti-Series Cross Coupled Feedback Analysis"
* SPICE file generated by spice-noqsi version 20181225
* Send requests or bug reports to jpd@noqsi.com
XMiP fbP NulP NulN inP CMOS18ND W={2*W_i} L={L_i} ID={2*ID_i}
XMiN fbN NulN NulP inN CMOS18ND W={2*W_i} L={L_i} ID={2*ID_i}
VsP sourceP 0 V value={V_in/2} dc=0 dcvar=0 noise=0
VsN sourceN 0 V value={-V_in/2} dc=0 dcvar=0 noise=0
RsP sourceP inP R value={Z_i/2} noisetemp=0 noiseflow=0 dcvar=0
RsN sourceN inN R value={Z_i/2} noisetemp=0 noiseflow=0 dcvar=0
RlP outP 0 r value={R_ell/2} noisetemp=0 noiseflow=0 dcvar=0
RlN outN 0 r value={R_ell/2} noisetemp=0 noiseflow=0 dcvar=0
RcP fbP NulP R value={R_c} noisetemp=0 noiseflow=0 dcvar=0
RcN fbN NulN R value={R_c} noisetemp=0 noiseflow=0 dcvar=0
Rb NulN NulP R value={R_b} noisetemp=0 noiseflow=0 dcvar=0
RaP inP fbP R value={R_a} noisetemp=0 noiseflow=0 dcvar=0
RaN inN fbN R value={R_a} noisetemp=0 noiseflow=0 dcvar=0
GmP outP fbP NulP fbP {g_mo}
GmN outN fbN NulN fbN {g_mo}
CgsP NulP fbP C value={C_gso} vinit=0
CgsN NulN fbN C value={C_gso} vinit=0
.end
| RefDes | Nodes | Refs | Model | Param | Symbolic | Numeric |
|---|---|---|---|---|---|---|
| Cdd_M1_XMiN | fbN NulN | C | value | $0.5 c_{db XMiN}$ | $1.762 \cdot 10^{-13}$ | |
| vinit | $0$ | $0$ | ||||
| Cdd_M1_XMiP | fbP NulP | C | value | $0.5 c_{db XMiP}$ | $1.762 \cdot 10^{-13}$ | |
| vinit | $0$ | $0$ | ||||
| Cdg1_M1_XMiN | fbN NulP | C | value | $c_{dg XMiN}$ | $5.875 \cdot 10^{-13}$ | |
| vinit | $0$ | $0$ | ||||
| Cdg1_M1_XMiP | fbP NulN | C | value | $c_{dg XMiP}$ | $5.875 \cdot 10^{-13}$ | |
| vinit | $0$ | $0$ | ||||
| Cdg2_M1_XMiN | NulN inN | C | value | $c_{dg XMiN}$ | $5.875 \cdot 10^{-13}$ | |
| vinit | $0$ | $0$ | ||||
| Cdg2_M1_XMiP | NulP inP | C | value | $c_{dg XMiP}$ | $5.875 \cdot 10^{-13}$ | |
| vinit | $0$ | $0$ | ||||
| Cgg_M1_XMiN | NulP inN | C | value | $0.5 c_{gb XMiN} + 0.5 c_{gs XMiN}$ | $1.412 \cdot 10^{-12}$ | |
| vinit | $0$ | $0$ | ||||
| Cgg_M1_XMiP | NulN inP | C | value | $0.5 c_{gb XMiP} + 0.5 c_{gs XMiP}$ | $1.412 \cdot 10^{-12}$ | |
| vinit | $0$ | $0$ | ||||
| CgsN | NulN fbN | C | value | $C_{gso}$ | $C_{gso}$ | |
| vinit | $0$ | $0$ | ||||
| CgsP | NulP fbP | C | value | $C_{gso}$ | $C_{gso}$ | |
| vinit | $0$ | $0$ | ||||
| GmN | outN fbN NulN fbN | G | value | $g_{mo}$ | $g_{mo}$ | |
| GmP | outP fbP NulP fbP | G | value | $g_{mo}$ | $g_{mo}$ | |
| Gm_M1_XMiN | fbN NulN NulP inN | g | value | $0.5 g_{m XMiN}$ | $0.08002$ | |
| Gm_M1_XMiP | fbP NulP NulN inP | g | value | $0.5 g_{m XMiP}$ | $0.08002$ | |
| Go_M1_XMiN | fbN NulN fbN NulN | g | value | $0.5 g_{o XMiN}$ | $0.0006843$ | |
| Go_M1_XMiP | fbP NulP fbP NulP | g | value | $0.5 g_{o XMiP}$ | $0.0006843$ | |
| RaN | inN fbN | R | value | $R_{a}$ | $1082.0$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RaP | inP fbP | R | value | $R_{a}$ | $1082.0$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| Rb | NulN NulP | R | value | $R_{b}$ | $13.04$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RcN | fbN NulN | R | value | $R_{c}$ | $34.01$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RcP | fbP NulP | R | value | $R_{c}$ | $34.01$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RlN | outN 0 | r | value | $0.5 R_{\ell}$ | $5000$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RlP | outP 0 | r | value | $0.5 R_{\ell}$ | $5000$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RsN | sourceN inN | R | value | $0.5 Z_{i}$ | $150$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RsP | sourceP inP | R | value | $0.5 Z_{i}$ | $150$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| VsN | sourceN 0 | V | value | $- 0.5 V_{in}$ | $- 0.5 V_{in}$ | |
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| noise | $0$ | $0$ | ||||
| VsP | sourceP 0 | V | value | $0.5 V_{in}$ | $0.5 V_{in}$ | |
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| noise | $0$ | $0$ |
| Name | Symbolic | Numeric |
|---|---|---|
| $A_{i n}$ | $1.594$ | $1.594$ |
| $A_{y}$ | $0.04$ | $0.04$ |
| $B_{eq}$ | $\frac{0.5}{A_{y}}$ | $12.5$ |
| $B_{fb eq}$ | $\frac{R_{a} R_{b}}{R_{a} + R_{b} + R_{c}}$ | $12.5$ |
| $CGBO_{N18}$ | $1.0 \cdot 10^{-12}$ | $1.0 \cdot 10^{-12}$ |
| $CGSO_{N18}$ | $3.0 \cdot 10^{-10}$ | $3.0 \cdot 10^{-10}$ |
| $CJB_{0 N18}$ | $0.001$ | $0.001$ |
| $C_{OX N18}$ | $\frac{\epsilon_{0} \epsilon_{SiO2}}{TOX_{N18}}$ | $0.008422$ |
| $D_{eq}$ | $\frac{0.5}{A_{y} Z_{i}}$ | $0.04167$ |
| $D_{fb eq}$ | $\frac{R_{b} + R_{c}}{R_{a} + R_{b} + R_{c}}$ | $0.04167$ |
| $D_{i n}$ | $223.7$ | $223.7$ |
| $\Delta_{A y}$ | $0.004$ | $0.004$ |
| $\Delta_{R a}$ | $47.0$ | $47.01$ |
| $\Delta_{R b}$ | $1.361$ | $1.361$ |
| $\Delta_{R c}$ | $5.23$ | $5.231$ |
| $\Delta_{Z i}$ | $12$ | $12$ |
| $E_{CRIT N18}$ | $5.6 \cdot 10^{6}$ | $5.6 \cdot 10^{6}$ |
| $ID_{i}$ | $0.004927$ | $0.004927$ |
| $IM_{3}$ | $-66$ | $-66$ |
| $I_{0 N18}$ | $2 C_{OX N18} N_{s N18} U_{T}^{2} u_{0 N18}$ | $6.383 \cdot 10^{-7}$ |
| $I_{omax}$ | $0.0005$ | $0.0005$ |
| $I_{pmax}$ | $0.02$ | $0.02$ |
| $LDS_{N18}$ | $1.8 \cdot 10^{-7}$ | $1.8 \cdot 10^{-7}$ |
| $L_{i}$ | $1.8 \cdot 10^{-7}$ | $1.8 \cdot 10^{-7}$ |
| $NF$ | $2.5$ | $2.5$ |
| $NF_{fb eq}$ | $\frac{0.5 R_{a} \left(R_{b} - R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + \frac{R_{b} \left(R_{a} + R_{c} + R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + \frac{0.5 R_{c} \left(R_{b} - R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + 1$ | $1 + \frac{0.07446 \left(1 - 0.07667 R_{s}\right)^{2}}{R_{s}} + \frac{12.74 \left(0.0008959 R_{s} + 1\right)^{2}}{R_{s}}$ |
| $N_{s N18}$ | $1.35$ | $1.35$ |
| $R_{a}$ | $1082.0$ | $1082.0$ |
| $R_{aeq}$ | $\frac{0.5 \left(A_{y} Z_{i} - 1\right) \left(A_{y} Z_{i} + 1\right)}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)} + \frac{\left(A_{y} Z_{i} - 1\right) \left(10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 0.5 \cdot 10^{0.1 NF \alpha_{NF fb}} + 0.25 A_{y}^{2} Z_{i}^{2} - 0.5 A_{y} Z_{i} + 0.25\right)^{0.5}}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)}$ | $1082.0$ |
| $R_{b}$ | $13.04$ | $13.04$ |
| $R_{beq}$ | $\frac{Z_{i}}{2 A_{y} Z_{i} - 1}$ | $13.04$ |
| $R_{c}$ | $34.01$ | $34.01$ |
| $R_{ceq}$ | $\frac{- Z_{i} + \frac{0.5 \left(A_{y} Z_{i} - 1\right) \left(A_{y} Z_{i} + 1\right)}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)} + \frac{\left(A_{y} Z_{i} - 1\right) \left(10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 0.5 \cdot 10^{0.1 NF \alpha_{NF fb}} + 0.25 A_{y}^{2} Z_{i}^{2} - 0.5 A_{y} Z_{i} + 0.25\right)^{0.5}}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)}}{2 A_{y} Z_{i} - 1}$ | $34.01$ |
| $R_{\ell}$ | $1.0 \cdot 10^{4}$ | $1.0 \cdot 10^{4}$ |
| $R_{f n}$ | $56.55$ | $56.55$ |
| $T$ | $300$ | $300$ |
| $TOX_{N18}$ | $4.1 \cdot 10^{-9}$ | $4.1 \cdot 10^{-9}$ |
| $T_{max}$ | $70$ | $70$ |
| $T_{min}$ | $0$ | $0$ |
| $\Theta_{N18}$ | $0.28$ | $0.28$ |
| $U_{T}$ | $\frac{T k}{q}$ | $0.02585$ |
| $VAL_{N18}$ | $4.0 \cdot 10^{7}$ | $4.0 \cdot 10^{7}$ |
| $V_{P}$ | $1.8$ | $1.8$ |
| $V_{cmmax}$ | $1$ | $1$ |
| $V_{cmmin}$ | $0.8$ | $0.8$ |
| $Vth_{N18}$ | $0.36$ | $0.36$ |
| $W_{i}$ | $0.0003117 \pi$ | $0.0009792$ |
| $Z_{i}$ | $300$ | $300$ |
| $Z_{scm}$ | $5.0 \cdot 10^{-13}$ | $5.0 \cdot 10^{-13}$ |
| $\alpha_{I totin}$ | $0.5$ | $0.5$ |
| $\alpha_{NF con}$ | $0.25$ | $0.25$ |
| $\alpha_{NF fb}$ | $0.3$ | $0.3$ |
| $c$ | $2.998 \cdot 10^{8}$ | $2.998 \cdot 10^{8}$ |
| $\epsilon_{0}$ | $\frac{1}{c^{2} \mu_{0}}$ | $8.854 \cdot 10^{-12}$ |
| $\epsilon_{SiO2}$ | $3.9$ | $3.9$ |
| $f_{max}$ | $2.5 \cdot 10^{8}$ | $2.5 \cdot 10^{8}$ |
| $f_{min}$ | $1.0 \cdot 10^{6}$ | $1.0 \cdot 10^{6}$ |
| $k$ | $1.381 \cdot 10^{-23}$ | $1.381 \cdot 10^{-23}$ |
| $\mu_{0}$ | $4.0 \cdot 10^{-7} \pi$ | $1.257 \cdot 10^{-6}$ |
| $q$ | $1.602 \cdot 10^{-19}$ | $1.602 \cdot 10^{-19}$ |
| $u_{0 N18}$ | $0.042$ | $0.042$ |
| $IC_{CRIT XMiN}$ | $\frac{0.0625}{N_{s N18}^{2} U_{T}^{2} \left(\Theta_{N18} + \frac{1}{E_{CRIT N18} L_{i}}\right)^{2}}$ | $31.71$ |
| $IC_{CRIT XMiP}$ | $\frac{0.0625}{N_{s N18}^{2} U_{T}^{2} \left(\Theta_{N18} + \frac{1}{E_{CRIT N18} L_{i}}\right)^{2}}$ | $31.71$ |
| $IC_{XMiN}$ | $IC_{i XMiN} \left(1 + \frac{0.25 IC_{i XMiN}}{IC_{CRIT XMiN}}\right)$ | $1.435$ |
| $IC_{XMiP}$ | $IC_{i XMiP} \left(1 + \frac{0.25 IC_{i XMiP}}{IC_{CRIT XMiP}}\right)$ | $1.435$ |
| $IC_{i XMiN}$ | $\frac{ID_{i} L_{i}}{I_{0 N18} W_{i}}$ | $1.419$ |
| $IC_{i XMiP}$ | $\frac{ID_{i} L_{i}}{I_{0 N18} W_{i}}$ | $1.419$ |
| $V_{GS XMiN}$ | $2 N_{s N18} U_{T} \log{\left(e^{IC_{XMiN}^{0.5}} - 1 \right)} + Vth_{N18}$ | $0.4185$ |
| $V_{GS XMiP}$ | $2 N_{s N18} U_{T} \log{\left(e^{IC_{XMiP}^{0.5}} - 1 \right)} + Vth_{N18}$ | $0.4185$ |
| $c_{db XMiN}$ | $2 CJB_{0 N18} LDS_{N18} W_{i}$ | $3.525 \cdot 10^{-13}$ |
| $c_{db XMiP}$ | $2 CJB_{0 N18} LDS_{N18} W_{i}$ | $3.525 \cdot 10^{-13}$ |
| $c_{dg XMiN}$ | $2 CGSO_{N18} W_{i}$ | $5.875 \cdot 10^{-13}$ |
| $c_{dg XMiP}$ | $2 CGSO_{N18} W_{i}$ | $5.875 \cdot 10^{-13}$ |
| $c_{gb XMiN}$ | $2 CGBO_{N18} L_{i} + \frac{0.6667 C_{OX N18} L_{i} W_{i} \left(N_{s N18} - 1\right)}{N_{s N18}}$ | $2.566 \cdot 10^{-13}$ |
| $c_{gb XMiP}$ | $2 CGBO_{N18} L_{i} + \frac{0.6667 C_{OX N18} L_{i} W_{i} \left(N_{s N18} - 1\right)}{N_{s N18}}$ | $2.566 \cdot 10^{-13}$ |
| $c_{gs XMiN}$ | $2 CGSO_{N18} W_{i} + 1.333 C_{OX N18} L_{i} W_{i}$ | $2.567 \cdot 10^{-12}$ |
| $c_{gs XMiP}$ | $2 CGSO_{N18} W_{i} + 1.333 C_{OX N18} L_{i} W_{i}$ | $2.567 \cdot 10^{-12}$ |
| $g_{m XMiN}$ | $\frac{2 ID_{i}}{N_{s N18} U_{T} \left(IC_{XMiN} \left(1 + \frac{IC_{XMiN}}{IC_{CRIT XMiN}}\right) + 0.5 \left(IC_{XMiN} \left(1 + \frac{IC_{XMiN}}{IC_{CRIT XMiN}}\right)\right)^{0.5} + 1\right)^{0.5}}$ | $0.16$ |
| $g_{m XMiP}$ | $\frac{2 ID_{i}}{N_{s N18} U_{T} \left(IC_{XMiP} \left(1 + \frac{IC_{XMiP}}{IC_{CRIT XMiP}}\right) + 0.5 \left(IC_{XMiP} \left(1 + \frac{IC_{XMiP}}{IC_{CRIT XMiP}}\right)\right)^{0.5} + 1\right)^{0.5}}$ | $0.16$ |
| $g_{o XMiN}$ | $\frac{2 ID_{i}}{L_{i} VAL_{N18}}$ | $0.001369$ |
| $g_{o XMiP}$ | $\frac{2 ID_{i}}{L_{i} VAL_{N18}}$ | $0.001369$ |
| Name |
|---|
| $R_{s}$ |
| $V_{in}$ |
| $C_{gso}$ |
| $g_{mo}$ |
Go to Dual-Stage-Anti-Series-Cross-Coupled-Feedback-Analysis_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2023-11-25 20:52:48