"Circuit Data"

Circuit Data

Circuit diagram

Netlist: balancedCCFBnoiseControl.cir

"Balanced Cross Coupled Noisy Nullor Analysis"
* SPICE file generated by spice-noqsi version 20181225
* Send requests or bug reports to jpd@noqsi.com
XP inP NulN outP fbP N_noise sv={S_v} si={S_i}
XN inN NulP outN fbN N_noise sv={S_v} si={S_i}
VsP sourceP 0 V value={V_in/2} dc=0 dcvar=0 noise={4*k*T*R_s/2}
VsN sourceN 0 V value={-V_in/2} dc=0 dcvar=0 noise={4*k*T*R_s/2}
RsP sourceP inP R value={R_s/2} noisetemp=0 noiseflow=0 dcvar=0
RsN sourceN inN R value={R_s/2} noisetemp=0 noiseflow=0 dcvar=0
RlP outP 0 r value={R_ell/2} noisetemp=0 noiseflow=0 dcvar=0
RlN outN 0 r value={R_ell/2} noisetemp=0 noiseflow=0 dcvar=0
RcP fbP NulP R value={R_c} noisetemp={T} noiseflow=0 dcvar=0
RcN fbN NulN R value={R_c} noisetemp={T} noiseflow=0 dcvar=0
Rb NulN NulP R value={R_b} noisetemp={T} noiseflow=0 dcvar=0
RaP inP fbP R value={R_a} noisetemp={T} noiseflow=0 dcvar=0
RaN inN fbN R value={R_a} noisetemp={T} noiseflow=0 dcvar=0
C2 outP 0 C value={C_ocm/2} vinit=0
C1 outN 0 C value={C_ocm/2} vinit=0
.end
Table: Element data of expanded netlist 'Balanced Cross Coupled Noisy Nullor Analysis'
RefDesNodesRefsModelParamSymbolicNumeric
C1outN 0 C value$0.5 C_{ocm}$$0.5 C_{ocm}$
vinit$0$$0$
C2outP 0 C value$0.5 C_{ocm}$$0.5 C_{ocm}$
vinit$0$$0$
I1_XNinN NulP I noise$S_{i}$$S_{i}$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
I1_XPinP NulN I noise$S_{i}$$S_{i}$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
N1_XNoutN fbN 3_XN NulP N
N1_XPoutP fbP 3_XP NulN N
RaNinN fbN R value$R_{a}$$1082.0$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RaPinP fbP R value$R_{a}$$1082.0$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RbNulN NulP R value$R_{b}$$13.04$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RcNfbN NulN R value$R_{c}$$34.01$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RcPfbP NulP R value$R_{c}$$34.01$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RlNoutN 0 r value$0.5 R_{\ell}$$5000$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RlPoutP 0 r value$0.5 R_{\ell}$$5000$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RsNsourceN inN R value$0.5 R_{s}$$0.5 R_{s}$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RsPsourceP inP R value$0.5 R_{s}$$0.5 R_{s}$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
V1_XNinN 3_XN V noise$S_{v}$$S_{v}$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
V1_XPinP 3_XP V noise$S_{v}$$S_{v}$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
VsNsourceN 0 V value$- 0.5 V_{in}$$- 0.5 V_{in}$
dc$0$$0$
dcvar$0$$0$
noise$2 R_{s} T k$$8.284 \cdot 10^{-21} R_{s}$
VsPsourceP 0 V value$0.5 V_{in}$$0.5 V_{in}$
dc$0$$0$
dcvar$0$$0$
noise$2 R_{s} T k$$8.284 \cdot 10^{-21} R_{s}$
Table: Parameter definitions in 'Balanced Cross Coupled Noisy Nullor Analysis'.
NameSymbolicNumeric
$A_{y}$$0.04$$0.04$
$B_{eq}$$\frac{0.5}{A_{y}}$$12.5$
$B_{fb eq}$$\frac{R_{a} R_{b}}{R_{a} + R_{b} + R_{c}}$$12.5$
$D_{eq}$$\frac{0.5}{A_{y} Z_{i}}$$0.04167$
$D_{fb eq}$$\frac{R_{b} + R_{c}}{R_{a} + R_{b} + R_{c}}$$0.04167$
$\Delta_{A y}$$0.004$$0.004$
$\Delta_{R a}$$47.0$$47.01$
$\Delta_{R b}$$1.361$$1.361$
$\Delta_{R c}$$5.23$$5.231$
$\Delta_{Z i}$$12$$12$
$ID_{i}$$0.004927$$0.004927$
$IM_{3}$$-66$$-66$
$I_{omax}$$0.0005$$0.0005$
$I_{pmax}$$0.02$$0.02$
$L_{i}$$1.8 \cdot 10^{-7}$$1.8 \cdot 10^{-7}$
$NF$$2.5$$2.5$
$NF_{fb eq}$$\frac{0.5 R_{a} \left(R_{b} - R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + \frac{R_{b} \left(R_{a} + R_{c} + R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + \frac{0.5 R_{c} \left(R_{b} - R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + 1$$1 + \frac{0.07446 \left(1 - 0.07667 R_{s}\right)^{2}}{R_{s}} + \frac{12.74 \left(0.0008959 R_{s} + 1\right)^{2}}{R_{s}}$
$R_{a}$$1082.0$$1082.0$
$R_{aeq}$$\frac{0.5 \left(A_{y} Z_{i} - 1\right) \left(A_{y} Z_{i} + 1\right)}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)} + \frac{\left(A_{y} Z_{i} - 1\right) \left(10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 0.5 \cdot 10^{0.1 NF \alpha_{NF fb}} + 0.25 A_{y}^{2} Z_{i}^{2} - 0.5 A_{y} Z_{i} + 0.25\right)^{0.5}}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)}$$1082.0$
$R_{b}$$13.04$$13.04$
$R_{beq}$$\frac{Z_{i}}{2 A_{y} Z_{i} - 1}$$13.04$
$R_{c}$$34.01$$34.01$
$R_{ceq}$$\frac{- Z_{i} + \frac{0.5 \left(A_{y} Z_{i} - 1\right) \left(A_{y} Z_{i} + 1\right)}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)} + \frac{\left(A_{y} Z_{i} - 1\right) \left(10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 0.5 \cdot 10^{0.1 NF \alpha_{NF fb}} + 0.25 A_{y}^{2} Z_{i}^{2} - 0.5 A_{y} Z_{i} + 0.25\right)^{0.5}}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)}}{2 A_{y} Z_{i} - 1}$$34.01$
$R_{\ell}$$1.0 \cdot 10^{4}$$1.0 \cdot 10^{4}$
$T$$300$$300$
$T_{max}$$70$$70$
$T_{min}$$0$$0$
$V_{P}$$1.8$$1.8$
$V_{cmmax}$$1$$1$
$V_{cmmin}$$0.8$$0.8$
$W_{i}$$0.0003117 \pi$$0.0009792$
$Z_{i}$$300$$300$
$Z_{scm}$$5.0 \cdot 10^{-13}$$5.0 \cdot 10^{-13}$
$\alpha_{I totin}$$0.5$$0.5$
$\alpha_{NF con}$$0.25$$0.25$
$\alpha_{NF fb}$$0.3$$0.3$
$f_{max}$$2.5 \cdot 10^{8}$$2.5 \cdot 10^{8}$
$f_{min}$$1.0 \cdot 10^{6}$$1.0 \cdot 10^{6}$
$k$$1.381 \cdot 10^{-23}$$1.381 \cdot 10^{-23}$
Table: Parameters without definition in 'Balanced Cross Coupled Noisy Nullor Analysis.
Name
$S_{v}$
$R_{s}$
$S_{i}$
$V_{in}$
$C_{ocm}$

Go to Balanced-Cross-Coupled-Noisy-Nullor-Analysis_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2023-11-25 20:52:48