"Balanced Cross Coupled Noisy Nullor Analysis"
* SPICE file generated by spice-noqsi version 20181225
* Send requests or bug reports to jpd@noqsi.com
XP inP NulN outP fbP N_noise sv={S_v} si={S_i}
XN inN NulP outN fbN N_noise sv={S_v} si={S_i}
VsP sourceP 0 V value={V_in/2} dc=0 dcvar=0 noise={4*k*T*R_s/2}
VsN sourceN 0 V value={-V_in/2} dc=0 dcvar=0 noise={4*k*T*R_s/2}
RsP sourceP inP R value={R_s/2} noisetemp=0 noiseflow=0 dcvar=0
RsN sourceN inN R value={R_s/2} noisetemp=0 noiseflow=0 dcvar=0
RlP outP 0 r value={R_ell/2} noisetemp=0 noiseflow=0 dcvar=0
RlN outN 0 r value={R_ell/2} noisetemp=0 noiseflow=0 dcvar=0
RcP fbP NulP R value={R_c} noisetemp={T} noiseflow=0 dcvar=0
RcN fbN NulN R value={R_c} noisetemp={T} noiseflow=0 dcvar=0
Rb NulN NulP R value={R_b} noisetemp={T} noiseflow=0 dcvar=0
RaP inP fbP R value={R_a} noisetemp={T} noiseflow=0 dcvar=0
RaN inN fbN R value={R_a} noisetemp={T} noiseflow=0 dcvar=0
C2 outP 0 C value={C_ocm/2} vinit=0
C1 outN 0 C value={C_ocm/2} vinit=0
.end
| RefDes | Nodes | Refs | Model | Param | Symbolic | Numeric |
|---|---|---|---|---|---|---|
| C1 | outN 0 | C | value | $0.5 C_{ocm}$ | $0.5 C_{ocm}$ | |
| vinit | $0$ | $0$ | ||||
| C2 | outP 0 | C | value | $0.5 C_{ocm}$ | $0.5 C_{ocm}$ | |
| vinit | $0$ | $0$ | ||||
| I1_XN | inN NulP | I | noise | $S_{i}$ | $S_{i}$ | |
| value | $0$ | $0$ | ||||
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| I1_XP | inP NulN | I | noise | $S_{i}$ | $S_{i}$ | |
| value | $0$ | $0$ | ||||
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| N1_XN | outN fbN 3_XN NulP | N | ||||
| N1_XP | outP fbP 3_XP NulN | N | ||||
| RaN | inN fbN | R | value | $R_{a}$ | $1082.0$ | |
| noisetemp | $T$ | $300$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RaP | inP fbP | R | value | $R_{a}$ | $1082.0$ | |
| noisetemp | $T$ | $300$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| Rb | NulN NulP | R | value | $R_{b}$ | $13.04$ | |
| noisetemp | $T$ | $300$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RcN | fbN NulN | R | value | $R_{c}$ | $34.01$ | |
| noisetemp | $T$ | $300$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RcP | fbP NulP | R | value | $R_{c}$ | $34.01$ | |
| noisetemp | $T$ | $300$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RlN | outN 0 | r | value | $0.5 R_{\ell}$ | $5000$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RlP | outP 0 | r | value | $0.5 R_{\ell}$ | $5000$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RsN | sourceN inN | R | value | $0.5 R_{s}$ | $0.5 R_{s}$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RsP | sourceP inP | R | value | $0.5 R_{s}$ | $0.5 R_{s}$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| V1_XN | inN 3_XN | V | noise | $S_{v}$ | $S_{v}$ | |
| value | $0$ | $0$ | ||||
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| V1_XP | inP 3_XP | V | noise | $S_{v}$ | $S_{v}$ | |
| value | $0$ | $0$ | ||||
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| VsN | sourceN 0 | V | value | $- 0.5 V_{in}$ | $- 0.5 V_{in}$ | |
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| noise | $2 R_{s} T k$ | $8.284 \cdot 10^{-21} R_{s}$ | ||||
| VsP | sourceP 0 | V | value | $0.5 V_{in}$ | $0.5 V_{in}$ | |
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| noise | $2 R_{s} T k$ | $8.284 \cdot 10^{-21} R_{s}$ |
| Name | Symbolic | Numeric |
|---|---|---|
| $A_{y}$ | $0.04$ | $0.04$ |
| $B_{eq}$ | $\frac{0.5}{A_{y}}$ | $12.5$ |
| $B_{fb eq}$ | $\frac{R_{a} R_{b}}{R_{a} + R_{b} + R_{c}}$ | $12.5$ |
| $D_{eq}$ | $\frac{0.5}{A_{y} Z_{i}}$ | $0.04167$ |
| $D_{fb eq}$ | $\frac{R_{b} + R_{c}}{R_{a} + R_{b} + R_{c}}$ | $0.04167$ |
| $\Delta_{A y}$ | $0.004$ | $0.004$ |
| $\Delta_{R a}$ | $47.0$ | $47.01$ |
| $\Delta_{R b}$ | $1.361$ | $1.361$ |
| $\Delta_{R c}$ | $5.23$ | $5.231$ |
| $\Delta_{Z i}$ | $12$ | $12$ |
| $ID_{i}$ | $0.004927$ | $0.004927$ |
| $IM_{3}$ | $-66$ | $-66$ |
| $I_{omax}$ | $0.0005$ | $0.0005$ |
| $I_{pmax}$ | $0.02$ | $0.02$ |
| $L_{i}$ | $1.8 \cdot 10^{-7}$ | $1.8 \cdot 10^{-7}$ |
| $NF$ | $2.5$ | $2.5$ |
| $NF_{fb eq}$ | $\frac{0.5 R_{a} \left(R_{b} - R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + \frac{R_{b} \left(R_{a} + R_{c} + R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + \frac{0.5 R_{c} \left(R_{b} - R_{s}\right)^{2}}{R_{s} \left(R_{a} + R_{b} + R_{c}\right)^{2}} + 1$ | $1 + \frac{0.07446 \left(1 - 0.07667 R_{s}\right)^{2}}{R_{s}} + \frac{12.74 \left(0.0008959 R_{s} + 1\right)^{2}}{R_{s}}$ |
| $R_{a}$ | $1082.0$ | $1082.0$ |
| $R_{aeq}$ | $\frac{0.5 \left(A_{y} Z_{i} - 1\right) \left(A_{y} Z_{i} + 1\right)}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)} + \frac{\left(A_{y} Z_{i} - 1\right) \left(10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 0.5 \cdot 10^{0.1 NF \alpha_{NF fb}} + 0.25 A_{y}^{2} Z_{i}^{2} - 0.5 A_{y} Z_{i} + 0.25\right)^{0.5}}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)}$ | $1082.0$ |
| $R_{b}$ | $13.04$ | $13.04$ |
| $R_{beq}$ | $\frac{Z_{i}}{2 A_{y} Z_{i} - 1}$ | $13.04$ |
| $R_{c}$ | $34.01$ | $34.01$ |
| $R_{ceq}$ | $\frac{- Z_{i} + \frac{0.5 \left(A_{y} Z_{i} - 1\right) \left(A_{y} Z_{i} + 1\right)}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)} + \frac{\left(A_{y} Z_{i} - 1\right) \left(10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 0.5 \cdot 10^{0.1 NF \alpha_{NF fb}} + 0.25 A_{y}^{2} Z_{i}^{2} - 0.5 A_{y} Z_{i} + 0.25\right)^{0.5}}{A_{y} \left(2 \cdot 10^{0.1 NF \alpha_{NF fb}} A_{y} Z_{i} - 10^{0.1 NF \alpha_{NF fb}} - 2 A_{y} Z_{i}\right)}}{2 A_{y} Z_{i} - 1}$ | $34.01$ |
| $R_{\ell}$ | $1.0 \cdot 10^{4}$ | $1.0 \cdot 10^{4}$ |
| $T$ | $300$ | $300$ |
| $T_{max}$ | $70$ | $70$ |
| $T_{min}$ | $0$ | $0$ |
| $V_{P}$ | $1.8$ | $1.8$ |
| $V_{cmmax}$ | $1$ | $1$ |
| $V_{cmmin}$ | $0.8$ | $0.8$ |
| $W_{i}$ | $0.0003117 \pi$ | $0.0009792$ |
| $Z_{i}$ | $300$ | $300$ |
| $Z_{scm}$ | $5.0 \cdot 10^{-13}$ | $5.0 \cdot 10^{-13}$ |
| $\alpha_{I totin}$ | $0.5$ | $0.5$ |
| $\alpha_{NF con}$ | $0.25$ | $0.25$ |
| $\alpha_{NF fb}$ | $0.3$ | $0.3$ |
| $f_{max}$ | $2.5 \cdot 10^{8}$ | $2.5 \cdot 10^{8}$ |
| $f_{min}$ | $1.0 \cdot 10^{6}$ | $1.0 \cdot 10^{6}$ |
| $k$ | $1.381 \cdot 10^{-23}$ | $1.381 \cdot 10^{-23}$ |
| Name |
|---|
| $S_{v}$ |
| $R_{s}$ |
| $S_{i}$ |
| $V_{in}$ |
| $C_{ocm}$ |
Go to Balanced-Cross-Coupled-Noisy-Nullor-Analysis_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2023-11-25 20:52:48