"Design for Minimum Power"

Design for Minimum Power

Finding $c_{iss_{opt}}$

Here I need to take the derivative of the current with respect to $c_{iss}$ to find the optimimum $c_{iss}$

\begin{equation} c_{iss opt}=9.896 \cdot 10^{-13}\,\left[ \mathrm{F}\right] \end{equation}

With $c_{iss}$ known the range where a solution is garaunteed is:

\begin{equation} L_{i max}=1.519 \cdot 10^{-6}\,\left[ \mathrm{m}\right] \end{equation} \begin{equation} ID_{i min}=0.003009\,\left[ \mathrm{A}\right] \end{equation}

Finding $ID_{i_{min}}$

\begin{equation} ID_{i opt}=0.004927\,\left[ \mathrm{A}\right] \end{equation} \begin{equation} L_{i opt}=1.8 \cdot 10^{-7}\,\left[ \mathrm{m}\right] \end{equation} \begin{equation} W_{i opt}=0.0003117 \pi\,\left[ \mathrm{m}\right] \end{equation} \begin{equation} IC_{i opt}=1.084 \end{equation}

Go to Balanced-Cross-Coupled-MOSFET-Noisy-Nullor-Analysis_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2023-11-25 20:52:48