"Circuit Data"

Circuit Data

Circuit diagram

Netlist: balancedCCFBnoise.cir

"Balanced Cross Coupled Feedback Gain Analysis"
* SPICE file generated by spice-noqsi version 20181225
* Send requests or bug reports to jpd@noqsi.com
XP inP NulN outP fbP N_noise sv=0 si=0
XN inN NulP outN fbN N_noise sv=0 si=0
VsP sourceP 0 V value={V_in/2} dc=0 dcvar=0 noise={4*k*T*R_s/2}
VsN sourceN 0 V value={-V_in/2} dc=0 dcvar=0 noise={4*k*T*R_s/2}
RsP sourceP inP R value={R_s/2} noisetemp=0 noiseflow=0 dcvar=0
RsN sourceN inN R value={R_s/2} noisetemp=0 noiseflow=0 dcvar=0
RlP outP 0 r value={R_ell/2} noisetemp=0 noiseflow=0 dcvar=0
RlN outN 0 r value={R_ell/2} noisetemp=0 noiseflow=0 dcvar=0
RcP fbP NulP R value={R_c} noisetemp={T} noiseflow=0 dcvar=0
RcN fbN NulN R value={R_c} noisetemp={T} noiseflow=0 dcvar=0
Rb NulN NulP R value={R_b} noisetemp={T} noiseflow=0 dcvar=0
RaP inP fbP R value={R_a} noisetemp={T} noiseflow=0 dcvar=0
RaN inN fbN R value={R_a} noisetemp={T} noiseflow=0 dcvar=0
C2 outP 0 C value={C_ocm/2} vinit=0
C1 outN 0 C value={C_ocm/2} vinit=0
.end
Table: Element data of expanded netlist 'Balanced Cross Coupled Feedback Gain Analysis'
RefDesNodesRefsModelParamSymbolicNumeric
C1outN 0 C value$0.5 C_{ocm}$$0.5 C_{ocm}$
vinit$0$$0$
C2outP 0 C value$0.5 C_{ocm}$$0.5 C_{ocm}$
vinit$0$$0$
I1_XNinN NulP I noise$0$$0$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
I1_XPinP NulN I noise$0$$0$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
N1_XNoutN fbN 3_XN NulP N
N1_XPoutP fbP 3_XP NulN N
RaNinN fbN R value$R_{a}$$R_{a}$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RaPinP fbP R value$R_{a}$$R_{a}$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RbNulN NulP R value$R_{b}$$R_{b}$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RcNfbN NulN R value$R_{c}$$R_{c}$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RcPfbP NulP R value$R_{c}$$R_{c}$
noisetemp$T$$300$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RlNoutN 0 r value$0.5 R_{\ell}$$5000$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RlPoutP 0 r value$0.5 R_{\ell}$$5000$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RsNsourceN inN R value$0.5 R_{s}$$0.5 R_{s}$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
RsPsourceP inP R value$0.5 R_{s}$$0.5 R_{s}$
noisetemp$0$$0$
noiseflow$0$$0$
dcvar$0$$0$
dcvarlot$0$$0$
V1_XNinN 3_XN V noise$0$$0$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
V1_XPinP 3_XP V noise$0$$0$
value$0$$0$
dc$0$$0$
dcvar$0$$0$
VsNsourceN 0 V value$- 0.5 V_{in}$$- 0.5 V_{in}$
dc$0$$0$
dcvar$0$$0$
noise$2 R_{s} T k$$8.284 \cdot 10^{-21} R_{s}$
VsPsourceP 0 V value$0.5 V_{in}$$0.5 V_{in}$
dc$0$$0$
dcvar$0$$0$
noise$2 R_{s} T k$$8.284 \cdot 10^{-21} R_{s}$
Table: Parameter definitions in 'Balanced Cross Coupled Feedback Gain Analysis'.
NameSymbolicNumeric
$A_{y}$$0.04$$0.04$
$B_{eq}$$\frac{0.5}{A_{y}}$$12.5$
$D_{eq}$$\frac{0.5}{A_{y} Z_{i}}$$0.04167$
$\Delta_{A y}$$0.004$$0.004$
$\Delta_{Z i}$$12$$12$
$IM_{3}$$-66$$-66$
$I_{omax}$$0.0005$$0.0005$
$I_{pmax}$$0.02$$0.02$
$NF$$2.5$$2.5$
$R_{\ell}$$1.0 \cdot 10^{4}$$1.0 \cdot 10^{4}$
$T$$300$$300$
$T_{max}$$70$$70$
$T_{min}$$0$$0$
$V_{P}$$1.8$$1.8$
$V_{cmmax}$$1$$1$
$V_{cmmin}$$0.8$$0.8$
$Z_{i}$$300$$300$
$Z_{scm}$$5.0 \cdot 10^{-13}$$5.0 \cdot 10^{-13}$
$f_{max}$$2.5 \cdot 10^{8}$$2.5 \cdot 10^{8}$
$f_{min}$$1.0 \cdot 10^{6}$$1.0 \cdot 10^{6}$
$k$$1.381 \cdot 10^{-23}$$1.381 \cdot 10^{-23}$
Table: Parameters without definition in 'Balanced Cross Coupled Feedback Gain Analysis.
Name
$R_{b}$
$R_{s}$
$R_{c}$
$V_{in}$
$C_{ocm}$
$R_{a}$

Go to Balanced-Cross-Coupled-Feedback-Gain-Analysis_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2023-11-25 20:52:48