"Balanced Cross Coupled Feedback Gain Analysis"
* SPICE file generated by spice-noqsi version 20181225
* Send requests or bug reports to jpd@noqsi.com
XP inP NulN outP fbP N_noise sv=0 si=0
XN inN NulP outN fbN N_noise sv=0 si=0
VsP sourceP 0 V value={V_in/2} dc=0 dcvar=0 noise={4*k*T*R_s/2}
VsN sourceN 0 V value={-V_in/2} dc=0 dcvar=0 noise={4*k*T*R_s/2}
RsP sourceP inP R value={R_s/2} noisetemp=0 noiseflow=0 dcvar=0
RsN sourceN inN R value={R_s/2} noisetemp=0 noiseflow=0 dcvar=0
RlP outP 0 r value={R_ell/2} noisetemp=0 noiseflow=0 dcvar=0
RlN outN 0 r value={R_ell/2} noisetemp=0 noiseflow=0 dcvar=0
RcP fbP NulP R value={R_c} noisetemp={T} noiseflow=0 dcvar=0
RcN fbN NulN R value={R_c} noisetemp={T} noiseflow=0 dcvar=0
Rb NulN NulP R value={R_b} noisetemp={T} noiseflow=0 dcvar=0
RaP inP fbP R value={R_a} noisetemp={T} noiseflow=0 dcvar=0
RaN inN fbN R value={R_a} noisetemp={T} noiseflow=0 dcvar=0
C2 outP 0 C value={C_ocm/2} vinit=0
C1 outN 0 C value={C_ocm/2} vinit=0
.end
| RefDes | Nodes | Refs | Model | Param | Symbolic | Numeric |
|---|---|---|---|---|---|---|
| C1 | outN 0 | C | value | $0.5 C_{ocm}$ | $0.5 C_{ocm}$ | |
| vinit | $0$ | $0$ | ||||
| C2 | outP 0 | C | value | $0.5 C_{ocm}$ | $0.5 C_{ocm}$ | |
| vinit | $0$ | $0$ | ||||
| I1_XN | inN NulP | I | noise | $0$ | $0$ | |
| value | $0$ | $0$ | ||||
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| I1_XP | inP NulN | I | noise | $0$ | $0$ | |
| value | $0$ | $0$ | ||||
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| N1_XN | outN fbN 3_XN NulP | N | ||||
| N1_XP | outP fbP 3_XP NulN | N | ||||
| RaN | inN fbN | R | value | $R_{a}$ | $R_{a}$ | |
| noisetemp | $T$ | $300$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RaP | inP fbP | R | value | $R_{a}$ | $R_{a}$ | |
| noisetemp | $T$ | $300$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| Rb | NulN NulP | R | value | $R_{b}$ | $R_{b}$ | |
| noisetemp | $T$ | $300$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RcN | fbN NulN | R | value | $R_{c}$ | $R_{c}$ | |
| noisetemp | $T$ | $300$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RcP | fbP NulP | R | value | $R_{c}$ | $R_{c}$ | |
| noisetemp | $T$ | $300$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RlN | outN 0 | r | value | $0.5 R_{\ell}$ | $5000$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RlP | outP 0 | r | value | $0.5 R_{\ell}$ | $5000$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RsN | sourceN inN | R | value | $0.5 R_{s}$ | $0.5 R_{s}$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| RsP | sourceP inP | R | value | $0.5 R_{s}$ | $0.5 R_{s}$ | |
| noisetemp | $0$ | $0$ | ||||
| noiseflow | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| dcvarlot | $0$ | $0$ | ||||
| V1_XN | inN 3_XN | V | noise | $0$ | $0$ | |
| value | $0$ | $0$ | ||||
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| V1_XP | inP 3_XP | V | noise | $0$ | $0$ | |
| value | $0$ | $0$ | ||||
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| VsN | sourceN 0 | V | value | $- 0.5 V_{in}$ | $- 0.5 V_{in}$ | |
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| noise | $2 R_{s} T k$ | $8.284 \cdot 10^{-21} R_{s}$ | ||||
| VsP | sourceP 0 | V | value | $0.5 V_{in}$ | $0.5 V_{in}$ | |
| dc | $0$ | $0$ | ||||
| dcvar | $0$ | $0$ | ||||
| noise | $2 R_{s} T k$ | $8.284 \cdot 10^{-21} R_{s}$ |
| Name | Symbolic | Numeric |
|---|---|---|
| $A_{y}$ | $0.04$ | $0.04$ |
| $B_{eq}$ | $\frac{0.5}{A_{y}}$ | $12.5$ |
| $D_{eq}$ | $\frac{0.5}{A_{y} Z_{i}}$ | $0.04167$ |
| $\Delta_{A y}$ | $0.004$ | $0.004$ |
| $\Delta_{Z i}$ | $12$ | $12$ |
| $IM_{3}$ | $-66$ | $-66$ |
| $I_{omax}$ | $0.0005$ | $0.0005$ |
| $I_{pmax}$ | $0.02$ | $0.02$ |
| $NF$ | $2.5$ | $2.5$ |
| $R_{\ell}$ | $1.0 \cdot 10^{4}$ | $1.0 \cdot 10^{4}$ |
| $T$ | $300$ | $300$ |
| $T_{max}$ | $70$ | $70$ |
| $T_{min}$ | $0$ | $0$ |
| $V_{P}$ | $1.8$ | $1.8$ |
| $V_{cmmax}$ | $1$ | $1$ |
| $V_{cmmin}$ | $0.8$ | $0.8$ |
| $Z_{i}$ | $300$ | $300$ |
| $Z_{scm}$ | $5.0 \cdot 10^{-13}$ | $5.0 \cdot 10^{-13}$ |
| $f_{max}$ | $2.5 \cdot 10^{8}$ | $2.5 \cdot 10^{8}$ |
| $f_{min}$ | $1.0 \cdot 10^{6}$ | $1.0 \cdot 10^{6}$ |
| $k$ | $1.381 \cdot 10^{-23}$ | $1.381 \cdot 10^{-23}$ |
| Name |
|---|
| $R_{b}$ |
| $R_{s}$ |
| $R_{c}$ |
| $V_{in}$ |
| $C_{ocm}$ |
| $R_{a}$ |
Go to Balanced-Cross-Coupled-Feedback-Gain-Analysis_index
SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team
For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl
Last project update: 2023-11-25 20:52:48