"ABCD Parameters"

ABCD Parameters

Test circuit

T1 matrix of the device under test

The T1 matrix of the device under test is found as:

\begin{equation} T_{1}=\left[\begin{matrix}0 & \frac{R_{a} R_{b}}{R_{a} + R_{b} + R_{c}}\\0 & \frac{R_{b} + R_{c}}{R_{a} + R_{b} + R_{c}}\end{matrix}\right] \end{equation}

The matrix equation for the two-port (DUT) is found as:

$$\left[\begin{matrix}V_{in}\\I_{in}\end{matrix}\right]=\left[\begin{matrix}0 & \frac{R_{a} R_{b}}{R_{a} + R_{b} + R_{c}}\\0 & \frac{R_{b} + R_{c}}{R_{a} + R_{b} + R_{c}}\end{matrix}\right]\cdot\left[\begin{matrix}V_{out}\\I_{out}\end{matrix}\right]$$

Updated specifications

analysisequations specification

Table analysisequations specification
symboldescriptionvalueunits
$B_{fb eq}$The B T-1 Parameter for a Balanced Cross Coupled Feedback Circuit $\frac{R_{a} R_{b}}{R_{a} + R_{b} + R_{c}}$$\mathrm{\frac{V}{A}}$
$D_{fb eq}$The D T-1 Parameter for a Balanced Cross Coupled Feedback Circuit $\frac{R_{b} + R_{c}}{R_{a} + R_{b} + R_{c}}$$\mathrm{1}$

designequations specification

Table designequations specification
symboldescriptionvalueunits
$B_{eq}$Typical Voltage -> Current Gain$\frac{0.5}{A_{y}}$$\mathrm{\frac{V}{A}}$
$D_{eq}$Typical Current -> Current Gain$\frac{0.5}{A_{y} Z_{i}}$$\mathrm{1}$

Go to Balanced-Cross-Coupled-Feedback-Gain-Analysis_index

SLiCAP: Symbolic Linear Circuit Analysis Program, Version 2.0.1 © 2009-2023 SLiCAP development team

For documentation, examples, support, updates and courses please visit: analog-electronics.tudelft.nl

Last project update: 2023-11-25 20:52:48